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Globally, cerebrovascular disease remains the leading 
cause of severe disability and mortality (1). Atheroscle-

rosis is frequently associated with cerebrovascular events. 
The degree of artery stenosis is considered one of the pa-
rameters for therapeutic options (2,3). Head and neck CT 
angiography has emerged as a front-line approach to assess 
the atherosclerotic process and gained worldwide clinical 
acceptance (4). However, the interpretation of CT an-
giography still requires detailed evaluation of all cervical 
vascular structures, which is a time-intensive process (5). 
Moreover, there is interobserver variability in the visual  
assessment of stenosis degree and plaque composition (6,7).

Deep learning (DL)–based approaches have drawn  
increasing interest due to the incremental data-driven it-
eration and generalization abilities from large data volumes 
(8,9). In radiology, DL has been applied in several assisting 
roles, such as generation of contrast-enhanced T1-weighted 
scans from precontrast MRI scans in patients with breast 
cancer (10), quantification of calcium score with coronary 

CT angiography (11), automated detection of cerebral  
aneurysms with CT angiography (12), prioritization in  
radiologic workflow and reduction of time to diagnosis of 
intracranial hemorrhage with nonenhanced CT images 
(13), and detection of pulmonary nodules with chest CT 
images (14). Computer-aided investigation of acute neu-
rologic disorders in neuroimaging may play a role in the 
triage of radiologic workflow, resulting in shorter time to 
diagnosis and improved management outcomes (15).

In past years, various DL models have shown potential 
for coronary artery stenosis detection and plaque quantifi-
cation (16–19). Convolutional neural networks have also 
been used for segmentation and automatic stenosis quanti-
fication with use of CT angiography images (20,21). Also, 
several studies have applied convolutional neural network 
models to achieve plaque classification and quantification 
in carotid artery atherosclerosis (4,22,23). However, stud-
ies have rarely investigated stenosis detection from head 
and neck CT angiography scans due to the wide range 

Background: Studies have rarely investigated stenosis detection from head and neck CT angiography scans because accurate  
interpretation is time consuming and labor intensive.

Purpose: To develop an automated convolutional neural network–based method for accurate stenosis detection and plaque  
classification in head and neck CT angiography images and compare its performance with that of radiologists.

Materials and Methods: A deep learning (DL) algorithm was constructed and trained with use of head and neck CT angiography images 
that were collected retrospectively from four tertiary hospitals between March 2020 and July 2021. CT scans were partitioned into 
training, validation, and independent test sets at a ratio of 7:2:1. An independent test set of CT angiography scans was collected  
prospectively between October 2021 and December 2021 in one of the four tertiary centers. Stenosis grade categories were as  
follows: mild stenosis (<50%), moderate stenosis (50%–69%), severe stenosis (70%–99%), and occlusion (100%). The stenosis 
diagnosis and plaque classification of the algorithm were compared with the ground truth of consensus by two radiologists (with 
more than 10 years of experience). The performance of the models was analyzed in terms of accuracy, sensitivity, specificity, and 
areas under the receiver operating characteristic curve.

Results: There were 3266 patients (mean age ± SD, 62 years ± 12; 2096 men) evaluated. The consistency between radiologists 
and the DL-assisted algorithm on plaque classification was 85.6% (320 of 374 cases [95% CI: 83.2, 88.6]) on a per-vessel basis. 
Moreover, the artificial intelligence model assisted in visual assessment, such as increasing confidence in the degree of stenosis. This 
reduced the time needed for diagnosis and report writing of radiologists from 28.8 minutes ± 5.6 to 12.4 minutes ± 2.0 (P < .001).

Conclusion: A deep learning algorithm for head and neck CT angiography interpretation accurately determined vessel stenosis and 
plaque classification and had equivalent diagnostic performance when compared with experienced radiologists.
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Radiologist Annotations
All images were anonymized. To ensure the accuracy of the  
annotation, we adopted a hierarchical labeling method for all 
the scans in the database. Data were labeled on the reconstructed  
images and the original axial images with ITK-SNAP software 
(version 3.6, University of Utah) (24) (Fig S1). The lumen la-
beled at 36 different angles with straightened rendering images 
and the two-dimensional segmentation of the vessel was anno-
tated without any plaque and branching vessels. Based on the 
extracted plaque candidate area on original images, artificial in-
telligence (AI) annotated the plaques and plaque type (calcified 
plaque, noncalcified plaque, mixed plaque). Then, 10 technolo-
gists (two of whom were authors F.F. and Y.S., with 2–4 years 
of clinical experience) independently labeled the vessel lumen 
and plaque with masks. After that, two radiologists (M.Z. and 
D.R., with 12 and 14 years of experience in neuroimaging, re-
spectively) double-checked the preliminary labeling results and 
relabeled cases. When disagreements occurred, an arbitrator 
(J.L., with 20 years of experience in neuroimaging) made the 
final decision.

Model Development
The core design of the CerebralDoc system was a DL model. 
The model was divided into two parts: a two-dimensional 
ResU-Net combined multiangle vessel stenosis auto-detection 
model and a three-dimensional ResU-Net combined multi-
feature sequence callback model (Fig 2). Accurate extracting 
centerline plays an important role in stenosis detection. Thus, 
a weighted skeleton method (25) combined with the topology 
of prior knowledge was used to obtain the most accurate cen-
ter trend line. The CT value of the area near the blood vessel 
boundary was used as a weight reference to optimize the precise 
position of the center point.

Then, two-dimensional ResU-Net was applied to the recon-
structed images, with 36 different angles responsible for the  
segmentation of vessel lumen. Straightened rendering images 
were adopted in this task to precisely visualize and annotate  
the vessel lumen with the attention model (Fig S2). Three-
dimensional ResU-Net was applied to original axial images re-
sponsible for segmentation of plaque. The multifeature sequence 
callback model was designed to remove false-positive findings 
(Fig S3). The online software is accessible at: http://test.platform.
shukun.net/login. To log in, use username: test and password: 
123456. Code is available at: https://bitbucket.org/zchao_sk/
cerebral/src/master/.

Auto Image Layout and Structured Reports
All the head and neck CT angiography images were processed 
for vessel segmentation and reconstruction by an automatic im-
aging reconstruction system that had been reported before (26). 
Multiple planners reformat, curve planner reformat, maximum 
intensity projection, and volume rendering images of all vessels 
were reconstructed. The four output images were placed in the 
first row of the film image produced by the junior AI system 
and could be verified and overwritten by technologists. After the 
technologist’s verification, the reconstructed images are exported 
to the diagnostic system.

from the aorta to skull and the tortuous and branched arterial 
brain vessels.

The purpose of this study was to develop an automated 
convolutional neural network–based method for accurate  
stenosis detection and plaque classification with head and 
neck CT angiography images and compare its performance 
with that of radiologists.

Materials and Methods
The study was approved by the institutional review board of the 
University Medical Center. Written informed consent for all 
patients were obtained in Capital Medical University Xuanwu 
Hospital for the 142 prospectively collected images.

Data Preparation
We retrospectively collected the images from four tertiary hos-
pitals between March 2020 and July 2021. All submissions and 
previous reports were not overlapped with the current work. In-
clusion criteria included raw contrast-enhanced head and neck 
CT angiography images with suspected cerebrovascular disease 
decided by clinicians (based on age, sex, risk factors, clinical 
symptoms such as motor and/or sensory issues, alalia, stupor 
and/or coma, limb weakness, numb, headache, dizziness and/
or vertigo, etc). Images with severe artifacts, lack of image data, 
and poor imaging quality were excluded. The patient CT angi-
ography images were in Digital Imaging and Communications 
in Medicine, or DICOM, format, and the scans were acquired 
from three different CT scanners. The imaging protocol in-
cluded standard head and neck CT angiography with variable 
imaging parameters (Table S1).

For the independent test set, 142 additional head and neck 
CT angiography images were prospectively selected between 
October 2021 and December 2021 to assess the diagnostic per-
formance of the model. The overall workflow diagram of the 
experimental design is shown in Figure 1.

Abbreviations
AI = artificial intelligence, DL = deep learning

Summary
In a multicenter study, a deep learning algorithm for evaluation of head 
and neck CT angiography had equivalent diagnostic performance for 
arterial stenosis and plaque classification compared with experienced 
radiologists.

Key Results
■  In a multicenter study, a deep learning algorithm trained with use 

of the head and neck CT angiography scans of 3266 patients had 
90% and 81% accuracy in an independent test set of 327 scans for 
stenosis diagnosis and plaque classification, respectively (all indica-
tors: area under the receiver operating characteristic curve > 0.85).

■  There was high agreement between the algorithm and ground 
truth of consensus by two radiologists on stenosis detection  
(κ = 0.84), plaque classification (κ = 0.78), and diameter stenosis 
(R = 0.87, P < .001).

■  The algorithm reduced the diagnosis and report writing time  
of radiologists from 28.8 minutes ± 5.6 to 12.4 minutes ± 2.0  
(P < .001).
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The diagnostic system first captures and places the most sig-
nificant stenosis (≥50%) in the left row of the film image page and 
achieves productivity by enabling traceability. The narrowing area 
can also be verified and overwritten by radiologists. The output of 
the adaptive layout tool included the location and degree of ste-
nosis, plaque composition, and a final structured report (Fig S4).

Performance Metrics

Model effectiveness.—Model performance was measured by 
lumen and calcification segmentation Dice similarity score, 
calcification recall, and calcification precision, which were eval-
uated by all plaques and lumen vessels, so the segmentation of 
plaques was per plaque, while the segmentation of the lumen 
vessels was per vessel.

Clinical evaluation.—Two radiologists (M.Z. and D.R.) per-
formed the assessment of the head and neck CT angiography 
images blinded to the clinical indication, radiologic reports, 
and other imaging examinations. After reading randomly and 
solving any disagreement by discussion, they came to a consen-
sus representing the ground truth for the study. Stenosis grade 
categories were as follows: mild stenosis (<50%), moderate ste-
nosis (50%–69%), severe stenosis (70%–99%), and occlusion 
(100%). Lumen diameter with 50% stenosis or more was con-
sidered clinically significant and quantitative measurements were 
made in maximal stenosis diameter up to a luminal diameter 

limit of at least 1.5 mm. The diagnostic performance was com-
pared between AI and visual inspection on per-patient and per-
vessel level, respectively. Moreover, a plaque was characterized as 
noncalcified plaque (including fibrous, fibro-fatty, and necrotic 
core), mixed plaque, and calcified plaque. The mixed plaque is 
the mixture of noncalcified component and calcification. Calci-
fied plaque based upon Hounsfield unit densities of greater than 
350 HU (18). Of the moderate and severe stenosis, the threshold 
stenosis was 45%–55% and 70%–80%, respectively.

There were 142 CT angiograms assigned to each of the two 
radiologists (F.F. and Y.S.) for random interpretation either with 
or without aid of the algorithm. Following a 1-month washout 
period, the same selected sample was randomly interpreted again 
by the same corresponding radiologist with or without aid of 
the algorithm (if the first read was with algorithm aid, then the 
second read was without algorithm aid). The average diagnosis 
and report writing time, overall time (including reconstruction, 
diagnosis, and report writing), and diagnostic efficiency (defined 
as the detected numbers of stenosis per unit time) of AI and 
radiologists were recorded.

Statistical Analysis
All the analyses were conducted with use of SPSS software  
version 23.0 (IBM). Spearman correlation coefficient was used 
to assess correlation between AI and radiologists in maximum 
percentage stenosis. Bland-Altman plots were used to evaluate 
the consensus between AI and radiologists for determined maxi-

Figure 1: Experimental setting diagram shows the algorithm approach at achieving stenosis detection and plaque classification. The training  
process was divided into two parts with two overlapping training sets. Two models derived from ResU-Net were assessed for performance evalua-
tion by the average value of fivefold index. Then, the better performance of the model was obtained after rounds of training iterations. The final two 
models were deployed to an independent test set with 327 patients to manifest the credibility of deep learning–assisted algorithm by accuracy and 
consistency analysis. CTA = CT angiography, DSC = Dice similarity score.
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mal diameter stenosis. Weighted κ statistic was used to measure 
agreement between AI and radiologists. Diagnostic performance 
of AI was assessed through diagnostic accuracy, sensitivity, speci-
ficity, and positive and negative predictive values, as compared 
with the ground truth by radiologists. The diagnostic perfor-
mances of AI and visual assessment for luminal stenosis were 
evaluated by the area under the receiver operating characteris-
tic curves. Covariance test was used to compare the consumed 
time of AI and radiologists with the increase of diseased vessels.  
P < .05 were considered to indicate a statistically significant  
result. Statistical analysis was performed by two authors (F.F. and 
G.Y., with 8 years of experience in algorithm).

Results

Patient Characteristics
Of 3521 head and neck CT angiography scans, 113 (3.2%) 
CT angiography scans were excluded based on severe artifacts  
(n = 54), lack of image data (n = 32), and poor imaging quality  
(n = 27) (Fig 1). In total, after exclusions, 3266 consecutive pa-
tients (mean age ± SD, 62 years ± 12; 2096 men) who under-
went head and neck CT angiography at three tertiary hospitals 

(from March 2020 to July 2021) were included for model de-
velopment. In addition, 142 patients (mean age, 61 years ± 11; 
79 men) prospectively underwent CT angiography for clinical 
evaluation (independent test set). The demographic data and 
baseline clinical variables for model development and clinical 
evaluation are depicted in Table 1.

Model Performance
During the training process, the Dice similarity scores for the cal-
cification segmentation of plaque were 0.95 (95% CI: 0.92, 0.98) 
and 0.88 (95% CI: 0.85, 0.91), recall of 0.96 and 0.94, and calci-
fication precision of 0.93 and 0.85 for the training and validation 
sets, respectively. The vessel lumen segmentation obtained Dice 
similarity scores of 0.96 (95% CI: 0.93, 0.97) and 0.95 (95% CI: 
0.92, 0.97) for the training and validation sets. In the independent 
test set used to evaluate model performance, this model achieved 
an accuracy of stenosis diagnosis of 90% with 19 occluded arteries 
and all these arteries were detected by AI (Fig S5).

Diagnostic Performance of Stenosis in Patient-based Analysis
Among the 142 patients, 120 (85%) with significant stenosis 
were identified by radiologists, while 118 (83%) were identi-

Figure 2: Diagnosis framework shows the artificial intelligence software pipeline. (A) Based on the reconstruction image proposed before, a weighted skeleton method 
was used to extract the centerline. The formula was (M1−Vct)/(M1−M0). M1 is the vessel mean value, M0 is the background mean value, and Vct is the CT value of the 
current voxel. We also used the specific topology as prior knowledge to make the centerline direction more accurate. Then, two-dimensional (2D) ResU-Net was  
applied to the straightened rendering images for vessel lumen segmentation. Additionally, a multiangle vessel stenosis auto-detection model was applied to calculate the 
stenosis degree for each point of the vessel centerline. Straightened rendering images rather than three-dimensional (3D) vessel segmentation images were used in this pipe-
line to avoid useless information, such as vessel branches that cause inaccurate stenosis calculation. Also, the network can work with light input data instead of large original 
data. (B) Three-dimensional ResU-Net was applied to original axial images for the segmentation of plaque. The input to the network was original three-dimensional volume 
data, which was split into 64 × 64 × 64. Then, the multifeature sequence callback model was used to reduce the false-positive rate caused by plaque segmentation. Finally, 
the probability of plaque type is output in a one-dimensional sequence. ICA = internal carotid artery, MAVS = multiangle vessel stenosis, VA = vertebral artery.
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fied by AI (artifacts in six patients were mistaken as calcification 
artifacts, and artifacts in four patients were mistaken as failed 
reconstruction) (Fig 3). The weighted κ coefficient between the 
consensus of AI and radiologists in patient-based stenosis detec-
tion was 0.84 ± 0.02. Diagnostic performance of AI had good 
consistency with experienced radiologists.

The accuracy, sensitivity, specificity, positive predictive value, 
and negative predictive value of AI in at least 50% of stenosis was 
93%, 95%, 83%, 97%, and 77%, respectively. Furthermore, in 
moderate (50%–69%) and severe stenosis (≥70%), the diagnos-
tic performance of the AI model was shown in Table 2.

There was high agreement between the consensus of AI and 
radiologists in percent maximal stenosis (R = 0.80, P < .001). 
Bland-Altman plots depicted close mean differences between AI 
and radiologist consensus of 0.7% (95% CI: −0.6, 2.0) per patient 
(Fig 4).

Diagnostic Performance of Stenosis on Vessel-based Analysis
A total of 142 patients and 1846 vessels were included for  
analysis. The significant stenosis (≥50%) was depicted in 465 
vessels (25.2%) by AI and 449 vessels (24.3%) by radiologists 
(Fig S6). A discordance of 54.4% was primarily seen in the 
threshold stenosis (Fig S7). The weighted κ coefficient between 
the consensus of AI and radiologists in vessel-based stenosis  
detection was 0.80 ± 0.03.

The accuracy, sensitivity, specificity, positive predictive value, 
and negative predictive value of AI in at least 50% stenosis was 
94%, 90%, 95%, 86%, and 97%, respectively. Moreover, in 
moderate (50%–69%) and severe (≥70%) stenosis, the diag-
nostic performance of the AI model showed high agreement 
between the AI model and radiologist on diameter stenosis  
(R = 0.87, P < .001) (Table 2). Bland-Altman plots depicted 
close mean differences between the AI and radiologist consensus 
of 0.8% (95% CI: −0.6, 1.5) per vessel (Fig 4).

Plaque Classification Ability
In total, 465 nonnegligible plaques were detected in this study. 
The diagnostic accuracy of AI in identifying plaque classifica-
tion is depicted in Table 3. The overall agreement index (κ) and 
accuracy were 0.78 ± 0.03 and 85.6% (95% CI: 80.1, 91.2), 
respectively. The accuracy of AI and radiologists in noncalcified 
plaque, mixed plaque, and calcified plaque was 80.7%, 81.3%, 
and 91.8%. The consistency was relatively better in identifying 
calcified plaque than noncalcified (P < .001).

Clinical Application Performance of DL-assisted Algorithm
The algorithm reduced the diagnosis and report writing time  
of radiologists from 28.8 minutes ± 5.6 to 12.4 minutes ± 2.0  
(P < .001) (Fig 5A). Diagnostic efficiency was improved from 
11% (95% CI: 10.2, 12.1) to 28% (95% CI: 26.5, 29.6) with 
use of the algorithm (P < .001) (Fig 5B). There was a significant 
difference between the AI and radiologist for diagnosing report-
ing time (F = 48.6, P < .001) and overall time (F = 59.3, P < .001)  
(Fig 5C) with the increase of diseased vessels. Moreover, in the 
description of stenosis, AI could provide quantitative numbers 
to radiologists (Fig 6).

The combined system reduced the overall time (including 
postprocessing, imaging interpretation, and complete junior diag-
nosis) from 45.2 minutes ± 4.3 to 14.2 minutes ± 1.4, facilitating 
clinical workflows (Fig S8).

Discussion
Interpreting head and neck CT angiography examination for 
clinical care is a time-consuming and labor-intensive process and 
requires expertise in cerebrovascular imaging. An artificial intel-
ligence–based system that automatically processes head and neck 
CT angiography examinations, including the extraction of bone 
and vessels branch centerlines, as well as detection and localiza-
tion of the atherosclerotic changes, could serve as a valuable tool 
to assist the clinicians. Thus, we aimed to develop an automated 
convolutional neural network–based method to provide accurate 
stenosis detection and plaque classification in head and neck CT 
angiography images. Moreover, the efficacy of the deep learning 
(DL) technique on image analysis was compared with experienced 
radiologists. Our results indicated that the DL algorithm could be 
trained to complete lumen and plaque segmentation automati-
cally in a wide variety of enhanced CT angiography scans. There 
was high agreement between the algorithm and radiologists on 
stenosis detection (κ = 0.84), plaque classification (κ = 0.78), and 
diameter stenosis (R = 0.87, P < .001). Moreover, the algorithm 
reduced the diagnosis and report writing time of radiologists from 
28.8 minutes ± 5.6 to 12.4 minutes ± 2.0 (P < .001).

Since 2011, convolutional neural networks have acquired 
many outstanding achievements in the segmentation, detection, 
and identification of regions within medical images (5,27,28). In 
our previous study, we developed a computational tool that could 
automatically extract entire vessels from head and neck scans and 
finish image reconstruction (26). Studies show the segmentation 
performance of convolutional neural networks is better than tra-
ditional methods (eg, region growth and some mixed traditional 
machine learning methods) (29,30). Prior studies (7,16,17) that 
used DL for stenosis quantification mostly did segmentation on 

Table 1: Demographic Data

Parameter Model Development* Clinical Evaluation†

Patients 3266 (2286/653/327) 142
 M 2096 (1465/459/172) 79
 F 1170 (821/194/155) 63
Age ± SD (y)‡ 62 ± 12 (60 ± 10/63 ± 

14/61 ± 12) [38–39]
61 ± 11 [42–81]

CVD prevalence§ 85 (83/88/85) 85
Hypertension 1688 (1212/354/122) 94
Hyperlipidemia 1810 (1320/366/124) 108
Diabetes 975 (621/254/100) 43
Smoking 1083 (792/186/105) 75
Antiplatelet therapy 1011 (767/194/50) 34

Note.—Data are numbers of patients, unless otherwise noted. 
CVD = cerebrovascular disease.
* Data in parentheses are training/validation/independent  
test set.
† Data are independent test sets.
‡ Data in brackets are IQRs.
§ Data are percentages.
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Figure 3: Multiple planners reformat, curve planner reformat, maximum intensity projection, and volume rendering images show examples of misdiagnoses by artificial 
intelligence (AI) (arrow and boxes). (A) Images show misidentification of artifacts as severe stenosis by AI. (B) Images show artifacts caused by intracranial aneurysm clipping 
mistaken as severe stenosis by AI (box). (C, D) Images show the wall calcification had obvious beam hardening artifacts that made the overestimation of stenosis degree by AI 
(arrows and boxes). LAS = left anterior superior, RAS = right anterior superior.

Table 2: Diagnostic Performance of CT Angiography Algorithm Compared with Radiologists

Threshold 
Classification

At Least 50% Stenosis 50%–69% Stenosis At Least 70% Stenosis

Per Vessel Per Patient Per Vessel Per Patient Per Vessel Per Patient
Accuracy 94 (1139/1847)  

 [0.93, 0.95]
93 (133/144)  
 [0.89, 0.97]

96 (1776/1847)  
 [0.95, 0.97]

86 (122/142)  
 [0.80, 0.92]

96 (1779/1847)  
 [0.95, 0.97]

87 (124/142)  
 [0.84, 0.90]

Sensitivity 90 (405/449)  
 [0.87, 0.93]

95 (114/120)  
 [0.89, 0.98]

92 (186/202)  
 [0.87, 0.95]

95 (86/91)  
 [0.87, 0.98]

83 (204/247)  
 [0.77, 0.87]

91 (85/93)  
 [0.83, 0.96]

Specificity 95 (1134/1398)  
 [0.94, 0.96]

83 (20/24)  
 [0.64, 0.93]

97 (1590/1645)  
 [0.96, 0.97]

71 (36/51)  
 [0.56, 0.82]

98 (1575/1600)  
 [0.98, 0.99]

80 (39/49)  
 [0.65, 0.89]

PPV 86 (405/469)  
 [0.83, 0.89]

97 (114/118)  
 [0.91, 0.99]

77 (186/241)  
 [0.71, 0.82]

85 (86/101)  
 [0.76, 0.91]

89 (204/229)  
 [0.84, 0.93]

90 (85/95)  
 [0.81, 0.95]

NPV 97 (1334/1378)  
 [0.96, 0.98]

77 (20/26)  
 [0.60, 0.92]

99 (1590/1606)  
 [0.99, 1.00]

88 (36/47)  
 [0.78, 0.98]

97 (1575/1618)  
 [0.97, 0.99]

83 (39/47)  
 [0.77, 0.87]

AUC* 0.93 [0.89, 0.95] 0.88 [0.79, 0.98] 0.94 [0.92, 0.97] 0.83 [0.75, 0.91] 0.91 [0.88, 0.93] 0.86 [0.78, 0.93]

Note.—Data are percentages, with numbers of patients in parentheses and 95% CIs in brackets. AUC = area under the receiver operating 
characteristic curve, NPV = negative predictive value, PPV = positive predictive value.
* Data are AUC values with 95% CIs in brackets.
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the original axial view or typical curve planner reformat view. 
However, the segmentation on axial view or single curve planner 
reformat view has some limitations, such as missing the complete 
vessel information. In our study, the vessel segmentation was per-
formed on straightened rendering view, providing a union model 
for the center line and complete vessel information usage. We ex-
tracted the centerline with a new feature called degree of center 
field, which could be generated at the same time as vessel segmen-
tation and avoid the deformation of bifurcation of vessels.

Plaque classification is challenging because of the need 
for an accurate segmentation algorithm, which may take 
thousands of data points and an understanding of vessel 
morphologic conditions. Several studies have developed 
AI models to simplify plaque characterization (30,31). For 
example, Matsumoto et  al (32) investigated an automated 

function for evaluating low-attenuation plaque by exclud-
ing voxels adjacent to the outer vessel wall of arteries. The 
results showed an improvement in discriminating lipid-rich 
components. However, the arterial brain vessels were small, 
branched, and easily affected by extravascular tissues, which 
made it difficult for the algorithm to perform plaque detec-
tion and segmentation. Three-dimensional ResU-Net was 
performed to segment and detect plaques with the original 
axial image of head and neck CT angiography in our model. 
Moreover, we used a multifeature sequence callback model 
to reduce the false-positive rate caused by peripheral tissues 
and report the final classification results.

In addition, several studies have demonstrated that DL 
methods could allow quantitative measurements of coronary 
arterial stenosis and have high correlation with expert readers 
(16,32–34). In our study, the correlation between the AI model 
and experts was high. Also, several AI models have been de-
veloped to classify plaque characterization. However, most of 
these studies focus on coronary plaque, and few of them are 
used clinically. Zreik et al (35) used a multitask recurrent convo-
lutional neural network to identify plaque characteristics (non-
calcified, mixed, and calcified) at the vessel level with a weighted 
κ of 0.66. In comparison, our algorithm achieved a higher κ 
value of 0.78 because we used a multifeature sequence callback 
model that could achieve an accurate classification and reduce 
the false-positive rate.

Our study had several limitations. First, the clinical sam-
ples were relatively small, and the selection of patients was 
biased. Second, fatty component was not included in the 

Figure 4: Linear regression and Bland-Altman plots show radiologist versus artificial intelligence (AI). Linear regression plots depict a close relationship between  
radiologist and AI diameter stenosis on both per-vessel and per-patient basis. Bland-Altman plots demonstrate good numeric agreement between radiologist and AI determined 
maximal diameter stenosis for per vessel and per patient. MD = mean difference.

Table 3: Diagnostic Accuracy and Agreement of Plaque 
Classification

Classification
Artificial  
Intelligence Radiologists Accuracy (%)

Noncalcified plaque 75 93 80.7
Calcified plaque 145 158 91.8
Mixed plaque 100 123 81.3
Total 320 374 85.6
Agreement index (κ) 0.78 P < .001 …

Note.—Data are numbers of artificial intelligence models and 
radiologists used, unless otherwise noted.
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categorization of plaques because of the limitations of im-
age resolution and the lack of accurate labeling. Third, the 
ground truth was the consensus of experienced radiologists 
without validation of the digital subtraction angiography.

In conclusion, in this pilot study, an automated convolu-
tional neural network–based deep learning algorithm for head 
and neck CT angiography interpretation accurately determined 
vessel stenosis and plaque classification. The algorithm had 

equivalent diagnostic performance when compared with expe-
rienced radiologists. This algorithm offers a time-saving and ac-
curate method to reconstruct, detect, classify, and lay out images 
of head and neck CT angiography to provide optimized clinical 
workflow. Multicenter and multivendor studies should be per-
formed to evaluate the diagnostic robustness of our algorithm. 
Also, further validation is necessary with invasive digital subtrac-
tion angiography as the reference standard. Ongoing studies will 

Figure 5: Charts show the comparison between the traditional head and neck CT angiography scans and deep learning–assisted algorithm. (A) 
Box and whisker plots show the average diagnostic consumed time between two radiologists and artificial intelligence (AI). (B) Box and whisker plots 
show the efficiency of the two radiologists improved when assisted by AI (efficiency was defined as the detected numbers of stenosis per unit time) and 
the overall time (including reconstruction, diagnosing, and reporting time) with and without AI. Boundaries of boxes indicate upper and lower quartiles 
and lines in boxes indicate medians. (C) Line charts show a significant difference between AI and radiologist for diagnosing reporting time (F = 48.6, P 
< .001) and overall time (F = 59.3, P < .001) with the increase of diseased vessels. Pslope means the significance test of slope in linear regression among 
three curves.
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include patients with severe stenosis with use of invasive angiog-
raphy as a reference.
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