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Renal agenesis-related genes
are associated with
Herlyn-Werner-Wunderlich
syndrome
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Objective: To explore the genetic causes of Herlyn-Werner-Wunderlich syndrome (HWWS) using whole-exome sequencing.
Design: Retrospective genetic study.

Setting: Academic medical center.

Patient(s): Twelve patients with HWWS.

Intervention(s): Whole-exome sequencing was performed for each patient. Sanger sequencing was used to confirm the potential caus-
ative genetic variants. In silico analysis and American College of Medical Genetics and Genomics guidelines were used to classify the
pathogenicity of each variant.

Main Outcome Measure(s): Rare sequence variants associated with miillerian duct development and renal agenesis were identified and
included in subsequent analyses.

Result(s): A total of 11 variants were identified in 10 of 12 patients (83.3%) and were considered to constitute a molecular genetic
diagnosis of HWWS. These 11 variants were related to 9 genes: CHDI1L, TRIM32, TGFBR3, WNT4, RET, FRAS1, FATI, FOXF1, and
PCSK5. All variants were heterozygous and confirmed by Sanger sequencing. The changes included one frameshift variant, one
splice-site variant, and eight missense variants. All of the identified variants were absent or rare in Genome Aggregation Database
East Asian populations. One of the 11 variants (9.1%) was classified as a pathogenic variant according to the American College of
Medical Genetics and Genomics guidelines, and 8 of the 11 variants (72.7%) were classified as variants of uncertain significance.
Conclusion(s): To our knowledge, this is the first report of the genetic causes of HWWS. Renal agenesis-related genes, such as CHDIL,
TRIM32, RET, and WNT4, may be associated with HWWS. Identification of these variants can not only help us understand the etiology
of HWWS and the relationship between reproductive tract development and urinary system development, but additionally improve the
level of genetic counseling for HWWS. (Fertil Steril® 2021;116:1360-9. ©2021 by American Society for Reproductive Medicine.)

El resumen esta disponible en Espaiiol al final del articulo.
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characterized as certain malfor- malformations are generally defined obstructed hemivagina and ipsilateral
mations in the uterus, cervix, fal- as anomalies that include more than renal anomaly syndrome (5), is a rare
lopian tubes, and vagina, and have been one organ or part of the female genital variant of the complex female genital
reported to occur in 4.3% to 6.7% of  tract (4). Herlyn-Werner-Wunderlich malformations according to the

F emale genital tract anomalies are women (1-3). Complex female genital syndrome (HWWS), also called
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classification of Acién and Acién (4). HWWS is typically
characterized by concurrence of uterus didelphys, double
cervix, and obstructed hemivagina, and is often accompanied
by ipsilateral renal agenesis or other genitourinary
malformations (6).

Herlyn-Werner-Wunderlich syndrome is caused by
abnormal fusion of the miillerian ducts. During human em-
bryonic development, the mesonephric ducts develop into
the urinary system, and the mullerian ducts develop into the
reproductive system. The development of the mullerian ducts
depends on the mesonephric ducts; therefore, when a meso-
nephric duct is underdeveloped, the developmental process
of the ipsilateral miillerian duct is affected, resulting in a se-
ries of malformations of the urinary and reproductive sys-
tems, such as the kidney, uterus, and vagina.

At present, the genetic factors that cause HWWS are un-
known. As a rare type, HWWS may have similar pathogenic
factors to other female genital tract anomalies. Previous
studies have found that genetic alterations can lead to female
genital tract anomalies. For example, PAX8, TBX6, WNT4,
WNT9B, BMP4, BMP7, HOXA10, LHX1, and other genes
are associated with Mayer-Rokitansky-Kuster-Hauser syn-
drome, septate uterus, or distal vaginal atresia (7-14).
Whether genetic factors are associated with HWWS is a
question still unexplored.

In this study, we aimed to explore the genetic causes of
HWWS using whole-exome sequencing (WES) technology.
We recruited 12 patients with HWWS and performed WES
and family genetic analysis on these patients. We tried to
find the genetic pathogenic factors related to HWWS.

MATERIALS AND METHODS
Patients

Twelve patients with HWWS were recruited at the Beijing Ob-
stetrics and Gynecology Hospital between October 2018 and
November 2020. The clinical conditions and manifestations
of the patients are presented in Table 1. This study was
approved by the Ethics Committee of Beijing Obstetrics and
Gynecology Hospital (2018-KY-027-01) and was conducted
in accordance with the 1964 Helsinki Declaration and its later
amendments. Written informed consent was first obtained
from each patient and their corresponding relatives, and
then 5-mL peripheral blood samples were collected for genetic
analysis.

Whole-Genome Copy Number Variation
Sequencing Analysis

Whole-genome copy number variation (CNV) sequencing was
performed by MyGenostics, Inc. (Beijing, People’s Republic of
China) and Novogene Bioinformatics Technology Co. Ltd.
(Tianjin, People’s Republic of China). The bioinformatics
analysis was performed as follows. First, Illumina sequencing
adapters and low-quality reads (<80 bp) were filtered out
with the use of Cutadapt (1.16) software (http://code.google.
com/p/cutadapt/). After quality control, the clean reads
were mapped to the UCSC hg19 human reference genome
with the use of BWA (0.7.12) software (http://bio-bwa.
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sourceforge.net/). Only uniquely mapped reads were selected.
The Genome Analysis Toolkit (GATK, 4.0.8.1) MarkDuplicates
was used to remove duplicated reads. Mapped reads were clas-
sified into adjustable sliding windows, which were 50kb in
length with 5-kb increments. The coverage of each window
was calculated on the basis of the read amount and underwent
a two-step bias correction (GC correction and population-
scale normalization). A binary segmentation algorithm was
used to localize the segment breakpoints to identify the candi-
date CNV regions and determine the CNV genotype, and the U
test and parallelism test were then used to estimate the geno-
type and significance of each segment.

Whole-Exome Sequencing Analysis

Libraries were generated with the use of the Agilent SureSe-
lect Human All Exon V6 kit (Agilent Technologies, Santa
Clara, CA, USA) after the manufacturer’s recommendations.
WES was performed by Annoroad Genomics (Beijing, Peo-
ple’s Republic of China) and Novogene Bioinformatics Tech-
nology Co. Ltd. on Illumina NovaSeq6000 sequencers with
a pair end of 150 bp (PE150) for each reaction. The raw
sequencing reads were aligned to the reference genome
GRCh37/hg19, and Genome Analysis Toolkit (GATK) soft-
ware was used to call the variants, including single nucleotide
polymorphisms and short insertions and deletions, which
were further annotated with the use of the ANNOVAR soft-
ware tool. The functional effects of variants (damaging or
not) were predicted with the use of three algorithms (Poly-
Phen-2, SIFT, and MutationTaster). The criteria used for
filtering the desired variants were missense, nonsense, frame-
shift, or splice-site variants and variants with minor allele fre-
quency < 1%. The minor allele frequency data were obtained
by referring to the following databases: Genome Aggregation
Database (gnomAD, http://gnomad.broadinstitute.org/), the
NHLBI Exome Sequencing Project (ESP6500), and the 1000
Genomes Project (1000G, http://browser.1000genomes.org/
index.html).

Sanger Sequencing Analysis

Sanger sequencing was performed to validate the mutation of
each identified gene and to determine if it was inherited from
a parent. Primer pairs for each gene are listed in Supplemental
Table 1 (available online). Forward or reverse primers were
used to sequence polymerase chain reaction products. The
sequencing reaction was performed on an ABI 3730 auto-
matic sequencer (Applied Biosystems, Foster City, CA, USA).

RESULTS
Whole-Exome Sequencing Analysis of the Patients

We recruited 12 affected female patients with HWWS in this
study (Table 1). We first performed CNV sequencing analysis
on each patient, and the results showed that there were no
pathogenic CNVs found (data not shown).

We then performed WES on each affected patient. A total
of 11 variants were identified in 83.3% (10 of 12) of the pa-
tients and were considered a molecular genetic diagnosis of
HWWS. These 11 variants were related to 9 genes: FRASI
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TABLE 1

Clinical information of 12 patients with Herlyn-Werner-Wunderlich syndrome.

European Society
of Human
Reproduction
and Embryology
and ESGE

Classification
according to
Acién and

Age at

onset of

Patient  symptoms

no.

Fc-H-1

Fc-H-2

Fc-H-3

Fc-H-4

Fc-H-5

Fc-H-6

Fc-H-7

Fc-H-8

Fc-H-9°

Fc-H-10°

Fc-H-112

Fc-H-12

(y)
24

24

25

Diagnosis

Herlyn-Werner-Wunderlich syndrome
(complete septate uterus, septate
cervix, left oblique vaginal septum,
left renal agenesis), endometriosis
stage |

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix, left
oblique vaginal septum with a
communicating buttonhole, left
renal agenesis)

Herlyn-Werner-Wunderlich syndrome
(complete septate uterus, septate
cervix, a small communication
between the septate cervices,
dysplasia of the right cervix, right
oblique vaginal septum, right renal
agenesis)

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix, left
obligue vaginal septum, left renal
agenesis), endometriosis stage |

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix,
right oblique vaginal septum, right
renal agenesis), endometriosis stage
I1l, left ovarian endometrioma

Herlyn-Werner-Wunderlich syndrome
(complete septate uterus, septate
cervix, right oblique vaginal septum,
right renal agenesis), endometriosis
stage |, primary infertility

Herlyn-Werner-Wunderlich syndrome
(bicornuate communicating uterus,
left cervical aplasia, left oblique
vaginal septum, left renal agenesis),
left adenomyosis, endometriosis
stage Il

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix,
right oblique vaginal septum, right
renal agenesis)

Herlyn-Werner-Wunderlich syndrome
(bicornuate communicating uterus,
left cervical aplasia, left oblique
vaginal septum, left renal agenesis)

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix,
blind right hemivagina with large
hematocolpos, right renal agenesis)

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix,
right oblique vaginal septum, right
renal agenesis), right uterus with
adenomyosis, right hydrosalpinx,
endometriosis stage Il

Herlyn-Werner-Wunderlich syndrome
(uterus didelphys, double cervix, left
obligue vaginal septum, left renal
agenesis)

Acién (4)
2A

2C

2B

2A

2A

2A

2B

2A

2B

2A

2A

2A

classification

U2bC1v2

U3cC2V1

U2bC1v2

U3cC2V2

U3bC2V2

U2bC1Vv2

U3aC3Vv2

U3bC2V2

U3aC3Vv2

U3bC2V2

U3bC3V2

U3cC2V2

Symptoms

Postmenstrual spotting and
dysmenorrhea

Vaginal pain during menstruation

Progressive worsening of dysmenorrhea

Progressive worsening of dysmenorrhea

Abnormal vaginal discharge

Menstruation prolonged

Postmenstrual spotting and abnormal
vaginal discharge

Progressive worsening of dysmenorrhea
and abnormal vaginal discharge and
pus

No obvious clinical symptoms

Right hysterectomy and right
salpingectomy were performed in
other hospitals due to
dysmenorrhea when she was 12
years old

Progressive worsening of dysmenorrhea

Dysmenorrhea and abnormal vaginal
discharge

Note: °The first operation on these patients was performed in another hospital, and we were unable to find photographs of the surgery and related imaging information. Therefore, the accurate
clinical classification is unknown, and the current classification is on the basis of the medical records; ESGE = European Society of Gastrointestinal Endoscopy.
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Note: The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing data from a wide variety of large-scale sequencing projects. In

this study, we referred to the allele frequencies in the East Asian (EAS) population. Pathogenicity items: PolyPhen-2: D, probably damaging; P, possibly damaging; B, benign. SIFT: D, damaging; T, tolerated. MutationTaster: D, disease-causing; N, polymorphism. LRT: D,

deleterious; N, neutral. FATHMM-MKL: D, damaging; N, neutral; NA, not applicable. ACMG items: ACMG, American College of Medical Genetics and Genomics guidelines; VUS, variant of uncertain significance; P, pathogenic variant; LB, likely benign variant.
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(Fc-H-1 and Fe-H-3), FAT1 (Fc-H-2), CHD1L (Fc-H-5 and Fc-
H-8), WNT4 (Fc-H-6), FOXF1 (Fc-H-9), TGFBR3 (Fc-H-10),
TRIM32 (Fc-H-10), PCSK5 (Fc-H-11), and RET (Fc-H-12)
(Table 2). All variants were heterozygous. These changes
included one frameshift variant, one splice-site variant, and
eight missense variants (Table 2). One patient (Fc-H-10)
harbored more than one variant in different genes (Table 2).
All of the identified variants were absent or rare in the gno-
mAD East Asian populations (Table 2). One variant (1 of 11,
9.1%) was classified as a pathogenic variant according to
the American College of Medical Genetics and Genomics
(ACMG) guidelines, and most of the variants (8 of 11,
72.7%) were classified as variants of uncertain significance

(Vus).

Novel HWWS Candidate Genes

CHDI1L. We identified the CHDIL variant in two unrelated
patients. Both Fc-H-5 and Fc-H-8 harbored the same
CHDIL splice-site variant, ¢.348-1G>C, which was
confirmed by Sanger sequencing (Fig.1A). Fc-H-5 was diag-
nosed as HWWS (European Society of Human Reproduction
and Endocrinology [ESHRE] classification: U3bC2V2) with
uterus didelphys, double cervix, right oblique vaginal septum,
and right renal agenesis (Table 1 and Fig. 1B). In addition, Fc-
H-8 was diagnosed as HWWS (ESHRE classification:
U3bC2V2) with uterus didelphys, double cervix, right oblique
vaginal septum, and right renal agenesis (Table 1 and Fig. 1D-
F). Blood samples from the parents of patient Fc-H-5 could
not be obtained; however, blood samples from the mother
of patient Fc-H-8 were available. The results of Sanger
sequencing suggested that Fc-H-8’s mother did not carry
the mutant allele of CHDIL (Fig. 1C), so the CHD1L variant
was segregated with HWWS. The allele frequency of the
€.348-1G>C variant in the gnomAD East Asian population
was 0.000388, and the variant was predicted to be a damaging
variant by the MutationTaster and FATHMM-MKL algorithms
(Table 2). This variant was classified as VUS (PP3+BS1) ac-
cording to the ACMG guidelines. This variant may affect
the acceptor splice-site (AG) on intron 3. In silico analysis
suggested two potential mechanisms caused by the c.348-
1G>C variant. One mechanism involves skipping exon 4,
leading to the synthesis of the truncated CHD 1L p.P119* pro-
tein. The other mechanism induces the retention of intron 3,
predicted to generate the truncated CHD1L p.F117Yfs*23
protein.

TRIM32 and TGFBR3. We identified a TRIM32 variant in
patient Fc-H-10. Fc-H-10 was diagnosed as HWWS (ESHRE
classification: U3bC2V2) with primary infertility (Table 1).
Fc-H-10 harbored the TRIM32 missense variant
¢.1012G>T; p.A338S (Table 2). This variant was confirmed
by Sanger sequencing (Supplemental Fig. 1A, available
online) and was classified as VUS (PM1+PM2+PP2+BP4)
according to the ACMG guidelines (Table 2). In addition, Fc-
H-10 harbored a frameshift variant in TGFBR3,
€.1997_1998del;p.V666Efs*16 (Supplemental Fig. 1A), which
was classified as a pathogenic variant (PVS1+PM2+PP3).
Therefore, potential digenic inheritance might be associated
with HWWS in patient Fc-H-10.
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A MT: CHDIL: ¢.348-1G>C

TTOOATTCABATTTOCTCC
Fc-H-5

A LAARA A

IVVBB;V(C-G-I!IGCVCC

Ctrl A r\ D1 3.99 cm
2 3.17 cm

2°? WT/WT

1
MT/WT

MT: CHDIL: ¢.348-1G>C

!

TTBGATTCACATTTGCTCC

Fc-H-8
(-1 /W

it

TR

TTGGATTCABATTTGCTCC

12 { ﬂ\

TTGGATTCABATTTGCTCC

CHD1L was mutated in patients with Herlyn-Werner-Wunderlich syndrome (HWWS). (A) Sanger sequencing validated the CHD 1L variant in patient
Fc-H-5. The red arrow indicates the variant site (c.348-1G>C). (B) Images of patient Fc-H-5 with a diagnosis of HWWS. In the transvaginal
ultrasound, two uterine contours (left) and the hydrocolpos (right; asterisk; the liquid dark area) of the right vagina can be seen in the pelvic
cavity. (C) Sanger sequencing confirmed the heterozygous CHDT1L variant in patient Fc-H-8. The patient’s mother harbored two wild-type
alleles. A sample from the patient’s father was unavailable. The red arrow indicates the variant site (c.348-1G>C). (D) Images of the uterus of
patient Fc-H-8 under laparoscopy indicated European Society of Human Reproduction and Endocrinology and European Society of
Gastrointestinal Endoscopy classification category U3b, and an external fundal indentation completely divided the uterine corpus up to the level
of the cervix. (E) In the coronal computed tomographic image of Fc-H-8, the absence of the right kidney (on the same side of the vaginal
septum) is evident. (F) Cervical morphology of patient Fc-H-8 after excision of the obstructed vaginal septum. The image shows the residual
traces of the obstructed hemivagina after resection, and the right side is the cervix behind the obstructed hemivagina cavity. L-UT = left uterus;
MT = mutated allele; R-UT = uterus; R-V = right vagina; WT = wild-type allele.

Li. HWWS due to mutations in renal agenesis genes. Fertil Steril 2021.

Other genes. In addition, we identified variants in the RET, cording to the ACMG guidelines (Table 2). A heterozygous
WNT4, PCSK5, FOXF1, FATI1, and FRAS1 genes. Variants missense variant in RET, c¢.1433G>A; p.C478Y, was found
other than the two FRAS I variants were classified as VUS ac- in patient Fc-H-12 (Table 2 and Fig. 2A), who was diagnosed
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A MT: RET: ¢.1433G>A

y

GGCCCAAGTBTGCCGAACT

“* Il

G6CCCAAGTBTGCCGAACT

Ctrl

27? WT/WT

I
MT/WT

MT: WNT4: ¢.527G>C

y

GG6GG6AGAGAACCAAGGGG GC

Fc-H-6
(II-1)
G GG6AGAGAABGCAAGGGGGC
1-2
GG66AGAGAAGBGCAAGGGGGC
Ctrl

RET and WNT4 variants were associated with Herlyn-Werner-Wunderlich syndrome (HWWS). (A) Sanger sequencing validated the RET variant in
patient Fc-H-12. The red arrow indicates the variant site ¢.1433G>A (RET). (B) Image of the pelvic cavity of patient Fc-H-12 under laparoscopy,
showing that an external fundal indentation partly divided the uterine corpus at the level above the cervix. On the basis of a combination with
three-dimensional ultrasound and hysteroscopy images, the patient was considered as European Society of Human Reproduction and
Endocrinology and European Society of Gastrointestinal Endoscopy classification category U3c. (C) Sanger sequencing confirmed the
heterozygous WNT4 variant in patient Fc-H-6. The patient’s mother harbored two wild-type alleles. A sample from the patient’s father was
unavailable. The red arrow indicates the variant site ¢.527G>C (WNT4). (D) The shape of the uterus in patient Fc-H-6 under laparoscopy was
normal, and the bottom of the uterus was slightly depressed. (E) In the three-dimensional ultrasound image of patient Fc-H-6, the shape of the
fundus of the uterus is still flat, and a septal echo can be seen from the fundus of the uterus to the cervix. The two cervical canals can be seen,
showing the shape of a complete septate uterus. In addition, combined hysteroscopy and laparoscopy confirmed a complete septate uterus

and septate cervix. MT = mutated allele; WT = wild-type allele.
Li. HWWS due to mutations in renal agenesis genes. Fertil Steril 2021.

with HWWS (ESHRE classification: U3¢C2V2) with uterus di-
delphys, double cervix, left oblique vaginal septum, and left
renal agenesis (Table 1 and Fig. 2B). In addition, we identified
a WNT4 heterozygous missense variant, c¢.527G>C;p.S176T,
in Fc-H-6 (Table 2 and Fig. 2C), who was diagnosed with
HWWS (ESHRE classification: U2bC1V2) with complete
septate uterus, septate cervix, right oblique vaginal septum,
and right renal agenesis (Table 1 and Fig. 2D and E). The other
variants in the PCSK5, FOXF1, FAT, and FRAS1 genes were

in addition confirmed by Sanger sequencing (Supplemental
Fig. 2A-E). The clinical images of patients Fc-H-11 and Fc-
H-9 are shown in Supplemental Fig. 3.

DISCUSSION

In this study, WES was used to study the genetic pathogenic
factors of HWWS. We identified several genes and variants
that may be related to the pathogenesis of HWWS. On the
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basis of previous studies, these genes are thought to be related
to renal agenesis. During the development of the human em-
bryo, the kidneys develop from the mesonephric ducts and the
reproductive tract develops from the millerian ducts. The
development of the ipsilateral miillerian duct is dependent
on the mesonephric duct. In addition, the present study found
that the genes and variants leading to renal agenesis may
cause abnormalities in the reproductive tract and further
expand the genetic variants and disease spectrum. Below,
we discuss these genes individually.

CHDIL. CHDIL encodes the chromodomain helicase DNA-
binding protein 1-like protein, a chromatin-remodeling
enzyme that catalyzes nucleosome sliding. CHD 1L is strongly
expressed in human fetal kidneys and is localized in the early
ureteric bud, the critical stage of kidney development (15),
suggesting that CHD 1L expression is important in the devel-
oping kidney. Heterozygous sequence variants in CHDIL
have been found to be associated with congenital anomalies
of the kidneys and urinary tract (CAKUT) (15-18). Thus, a
previous study suggested that CHDIL variants might lead to
renal dysplasia because of impaired chromatin remodeling
(15). Variants in CHDIL were found in two unrelated
patients with HWWS in our study. One splice-site variant,
¢.348-1G>C, was found in two patients. In silico analysis
suggested two potential mechanisms. Regardless of the mech-
anism, it is predicted that the c.348-1G>C variant produces a
CHD 1L truncated protein. Further minigene assays are needed
to validate the effect of the c.348-1G>C variant.

TRIM32. The TRIM32 gene has been reported to be associ-
ated with Bardet-Biedl syndrome (19, 20), which is defined
by obesity, mental retardation, retinal degeneration, polydac-
tyly, renal dysfunction, and miillerian fusion anomalies in fe-
males. A heterozygous microdeletion containing the TRIM32
gene was identified in two unrelated patients with uterus di-
delphys and a complete septate uterus (21). In addition, a
missense TRIM32 variant, c.1012G>T;pA338S, was found
in patient Fc-H-10, who harbored a frameshift variant in
TGFBR3, ¢.1997_1998del;p.Val666Glufs*16, a gene also
related to CAKUT (16), suggesting a digenic mode of
inheritance.

RET. In murine models, kidney formation is controlled by
several proteins, including RET (22). In humans, RET muta-
tions have been found to cause renal agenesis or CAKUT
(17, 18, 23-27), and studies have additionally suggested
that heterozygous mutations in RET may be the cause of
abnormal kidney development (23, 26). In this study, in
addition, we found a heterozygous missense variant in RET,
c.1433G>A;p.C478. This variant was predicted to be a
damaging variant by all of the in silico algorithms used
(Table 2). Therefore, we hypothesized that abnormal kidney
development caused by this RET variant might further
affect the formation of the miillerian ducts, leading to HWWS.

WNT4. Female Wnt4-knockout mice fail to develop miille-
rian ducts (28). In addition, human WNT4 variants were
found to be associated with miullerian duct abnormalities.
Heterozygous mutations E226G, A233T, L12P, and R83C in
WNT4 were found to be associated with atypical

Mayer-Rokitansky-Kuster-Hauser syndrome (29-32). In
addition, Wnt4-knockout mice showed kidney
hypodysplasia (33). In addition, genetic studies have found
some mutations associated with bilateral or unilateral renal
agenesis (29, 34, 35) or renal hypodysplasia (36). On the
basis of previous findings, WNT4 mutations were associated
with both miillerian duct anomalies and renal agenesis.
In our study, we found the WNT4 heterozygous
¢.527G>C;p.S176T variant in a patient with complete
septate uterus, septate cervix, right oblique vaginal septum,
and right renal agenesis. Therefore, our study supports the
association of the WNT4 variant with HWWS.

Other genes. In addition, we found several genes, including
PCSK5, FOXF1, FATI1, and FRAS1, that may be associated
with HWWS. Heterozygous mutations in conserved residues
in PCSK5 have been shown to be associated with vertebral
anomalies, anal atresia, cardiac defects, tracheoesophageal
fistula and/or esophageal atresia, renal and radial anomalies,
and limb defects (VACTERL) (37, 38). In addition, an
ethylnitrosourea-induced recessive mouse mutation, C470R,
was identified and the mouse phenotype also resembled the
VACTERL association phenotype in the human (37). FOXF1
is a transcription factor that has an important role in
epithelium-mesenchyme signaling. A FOXF1 de novo muta-
tion (p.Gly220Cys) was identified in a patient with a VAC-
TERL association-like phenotype, including Ileft renal
agenesis (39). In situ hybridization analyses in mouse em-
bryos suggested that Foxf1 was expressed in genital tubercle,
esophageal, tracheal, vertebral, and anal tissues (39). In addi-
tion, other studies found that mutations or microdeletions of
FOXF1 were associated with VACTERL or renal malforma-
tions (40-43). The FATI-encoded protein is a member of
the cadherin superfamily and is expressed at high levels in a
number of fetal epithelial tissues, including renal
glomerular epithelial cells. Sequence variants in FATI have
been identified in patients with CAKUT (16). Recessive
mutations in FRAS1 have been identified as the main cause
of Fraser syndrome (a syndromic CAKUT) and renal
agenesis (44-46). Although FRAS1 heterozygous missense
mutations have been reported to be a new cause of
nonsyndromic CAKUT or renal agenesis in humans (25, 47,
48), our study suggests that these four genes may also be
candidate genes associated with miullerian duct
development, especially HWWS disease.

In addition, we should discuss the limitations of this
study. HWWS is a rare disease with an incidence of
0.0032% to 0.3% (49). In this study, we recruited 12 patients
in our hospital in approximately 2 years, and we only per-
formed genetic analysis on these 12 patients. Thus, a limita-
tion of this study is the failure to recruit more patients for
genetic analysis. A study including more HWWS patients
might enable us to find more pathogenic genes or more
important major pathogenic genes associated with HWWS.
Therefore, in the future, we need to continue to recruit pa-
tients with HWWS and perform multicenter studies in coop-
eration with other hospitals and centers to further explore
the genetic pathogenic factors of HWWS. In addition, more
functional experiments to elucidate whether the variants are
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pathogenic are needed. Most of the variants found in this
study were VUS, and whether these variants cause adverse
changes in protein function is still unknown.

In summary, to our knowledge, this study is the first to
demonstrate that renal agenesis-related genes may be associ-
ated with HWWS. Our study provides insights into the poten-
tial molecular mechanisms underlying HWWS.
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Genes relacionados con la agenesia renal se asocian con el sindrome de Herlyn-Werner-Wunderlich.

Objetivo: Explorar las causas genéticas del sindrome de Herlyn-Werner-Wunderlich (HWWS) mediante la secuenciacion del exoma
completo.

Diseno: Estudio genético retrospectivo.
Entorno: Centro médico académico.
Paciente (s): Doce pacientes con HWWS.

Intervencion (es): Se realizé la secuenciacién del exoma completo para cada paciente. Se utilizé la secuenciacion de Sanger para con-
firmar la posible causa de las variantes genéticas. Se utilizaron analisis in silico y las guias del American College of Medical Genetics and
Genomics para clasificar la patogenicidad de cada variante.

Principales medidas de resultado: Se identificaron variantes de secuencias raras asociadas con el desarrollo de los conductos
miillerianos y con la agenesia renal y se incluyeron en andlisis subsecuentes.

Resultado (s): Un total de 11 variantes fueron identificadas en 10 de 12 pacientes (83.3%) y se consider6 que constituian un diag-
nostico genético molecular de HWWS. Estas 11 variantes estaban relacionadas con 9 genes: CHDIL, TRIM32, TGFBR3, WNT4,
RET, FRAS1, FATI1, FOXF1 y PCSK5. Todas las variantes fueron heterocigéticas y confirmadas con la secuenciacion Sanger. Los cam-
bios incluyeron una variante de desplazamiento del marco de lectura, una variante de sitio de empalme y ocho variantes de sentido
erréneo. Todas las variantes identificadas estaban ausentes o eran raras en la base de datos de Agregacion del Genoma de las Pobla-
ciones de Asia Oriental. Una de las 11 variantes (9,1%) fue clasificada como variante patogénica de acuerdo a las guias del American
College de Genética Médica y Gendmica, y 8 de las 11 variantes (72,7%) se clasificaron como variantes de significado incierto.

Conclusion (es): Segiin nuestro conocimiento, este es el primer reporte de las causas genéticas de HWWS. Los genes relacionados con la
agenesia renal, como CHD1L, TRIM32, RET y WNT4 podrian asociarse con HWWS. La identificacion de estas variantes no solo podria
ayudarnos a comprender la etiologia de HWWS y su relacion entre el desarrollo del tracto reproductivo y el desarrollo del sistema uri-
nario, sino que adicionalmente, a mejorar el nivel de asesoramiento genético para HWWS.
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